SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar. Andheri (W) Mumbai 400058

- Re Examinations (For Academic Year 2017-18)- January 2020 :

Program: Electrical Engineering
Course Code: BTE201
Course Name: Engineering Mathematics III

Duration: 3 hours
Maximum Points: 100
Semester: III

Instructions:

1. Question No 1 is compulsory.
2. Attempt any four questions out of remaining six.
3. Answers to sub questions should be grouped together.

3(a)	Reduce the following matrix to normal form and hence find its rank. $A=\left[\begin{array}{cccc} 8 & 3 & 6 & 1 \\ -1 & 6 & 4 & 2 \\ 7 & 9 & 10 & 3 \end{array}\right]$	6
(b)	Using method of Laplace Transforms solve following differential equation $\left(D^{2}-D-2\right) y=\sin 2 t$ where $y(0)=1, y^{\prime}(0)=2$	6
(c)	Find Fourier Series Expansion of following function in the interval $(0,2 \pi)$ $f(x)=\left\{\begin{array}{cc} x & 0 \leq x \leq \pi \\ 2 \pi-x, & \pi \leq x \leq 2 \pi \end{array}\right.$	8
4(a)	Find the image of the circle $\|z-1\|=1$ under the transformation $\frac{1}{z}$	6
(b)	Find Half Range Fourier sine Series of $f(x)=l x-x^{2}, \quad 0<x<l$	6
(c)	For the following matrix A , find two non-singular matrices P and Q such that PAQ is in the normal form where $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$. Hence find A^{-1}	8
5(a)	Show that the set $S=\{\cos x, \cos 2 x, \cos 3 x, \cdots\}$ is Orthogonal over $(0,2 \pi)$	6
(b)	If $A=\left[\begin{array}{cc}2 & 3 \\ -3 & -4\end{array}\right]$, using Cayley Hamilton Theorem, find A^{100}	6
(c)	Evaluate (i) $L^{-1}\left\{\frac{2 s^{2}+5 s+2}{(s-1)^{3}}\right\}$ (ii) $L^{-1}\left\{\log \left(1+\frac{4}{s^{2}}\right)\right\}$	8
6(a)	Find an analytic function $f(z)=u(x, y)+i v(x, y)$ if $v=e^{-x}\left[2 x y \cos y+\left(y^{2}-x^{2}\right) \sin y\right]$	6

| (b) | Find Eigen values of the matrix $A=\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$ | 6 |
| :--- | :--- | :---: | :---: |
| (c) | Find the bilinear transformation which maps the points
 $2, i,-2$ of z-plane onto $1, i,-1$ of $w-$ plane respectively | 8 |
| 7(a) | Show that the transformation $w=\frac{5-4 z}{4 z-2}$ transforms the circle $\|z\|=1$ into a
 circle in the w-plane. | 6 |
| (b) | Test the consistency of the following system of equations and solve them if
 they are consistent
 $4 x-2 y+6 z=8$
 $x+y-3 z=-1$
 $15 x-3 y+9 z=21$ | 6 |
| (c) | Evaluate $L^{-1}\left\{\frac{s}{s^{4}+4}\right\}$ | 8 |

Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

Reexam, Jan 2020

Program: : Electrical Engineering
Course Code : PC-BTE302
Name of the Course: Electrical Networks
Note: Answer any 5 questions...
Assume suitable data if missing

b.	For the given network draw oriented graph, write down the ftie set matrix and f -cutset matrix and incidence matrix.	8	1	5	2.1.3
c)	Find the poles and zeros of the impedence of the given network and plot them on s plane	4	2	3	2.1.3
3a	Check whether the function $Z(s)=\frac{s^{3}+6 s^{2}+7 s+3}{s^{2}+2 s+1}$ is a positive real function.	8	3	5	1.3.1
b.	Find the current through Z_{L} using mesh analysis	12	1	3	2.1.3
4 a	Draw the dual of the given network.	5	2	5	2.1.3

b	In the network switch is closed Assuming all initial conditions as zero find $\mathrm{i}, \mathrm{di} / \mathrm{dt}, \mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$	10	4	5	2.1.3
c	In the case of a series RC circuit excited by a DC supply V derive equation for transient current with initial conditions.	5	3	3	2.1.3
5a	In the network determine currents $i_{1}(t)$ and $i_{2}(t)$ when the switch is closed at $\mathrm{t}=0$.	10	2	3	2.1.3
b	Determine the Y and Z parameters for the given network	10	4	3	1.3.1
6a	A network is shown in fig.The poles and zeros of the driving point function $Z(s)$ of this network are at the following places. Poles at $-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$, Zero at -1 .If $Z(\mathrm{j} 0)=1$, Find the values of R,L, and C.	10	4	4	1.3.1

RE Exam - January 2020 Examinations

Program: Electrical
Course Code: PC-BTE303
Course Name: Digital Electronics

Duration: 1 hour
Maximum Points: 20
Semester: III

- Attempt any 5 out of 7 questions
- Make suitable assumptions wherever necessary

Q.No.	Questions	Points			
1 a .	The input to a combinational logic circuit is a 4 bit binary number. Design the circuit using minimum hardware whose output is valid BCD number.	Points	CO	BL	$\frac{\text { Pl }}{}$
1 b .	Implement BCD to Seven Segment (common anode type) code converter	10	2	3	2.2.3
2 a .	Design a controlled addition / subtraction circuit using IC 7483.	10	2	6	3.2.2
2 b .	Explain what are the problems associated with asynchronous counter and how they can be overcome.	10	3	2	1.4 .1
3 a .	Do the following conversion: i. S-R flip flop to D flip flop ii. J-K flip flop to T flip flop	10	3	3	3.2 .1
3b.	Explain the working of TTL NOR gate.	10	4	2	1.4.1
4a.	Implement the following $f(A, B, C, D)=\sum m(0,1,3,5,7,8,9,10,12,13,15) \quad$ using 1. Single $2: 1$ Mux 2. Single 4:1 Mux	10	2	4	2.2.3
4 b .	Explain with help of neat diagram Left shift register and Right Shift register.	10	3	2	1.4.1

5 a .	Design al0 bit comparator using IC 7485.	10	2	6	3.2.2
5 b .	Discuss the classification of memories	10	4	2	1.4.1
6 a.	Design the following synchronous counter using the concept of bushing.	10	3	6	3.2.2
6 b .	Perform the following i. $\quad(101101)_{2}=(?)_{8}$ ii. $(\mathrm{A} 2 \mathrm{C} 4)_{16}=(?)_{10}$ iii. $(10011)_{2}-(11001)_{2}$ using 1's compliment method iv. $\quad(46)_{10}=(?)_{\text {xs-3 }}$ v. $(\mathrm{I} 111)_{2} *(10 \mathrm{I})_{2}$	10	1	3	2.1.3
7 a .	Suppose the receiver receives hamming code data as 1011110. Find out if there is any error or not and correct it if error is present.	10	1	4	2.2.3
7 b.	Write short note on SOP and POS.	10	2	2	1.4.1

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

Re Exam Jan 2020

Program: Electrical Engineering
Course code: PC-BTE301
Name of the Course: Electronic Circuits

Duration: 3 Hour
Maximum Marks: 100
Semester: III

Solve any five questions out of seven

Q.					
1 A	State whether the following statements are true/false. Justify the sa	Points	C0	BL	PI
(i)	Open loop opamp is used as amplifier at low frequency.	5	4	5	13.1
(ii)	Instrumentation amplifier is used in medical electronics.	5	4	5	1.3.1
B(i)	The input impedance of a MOSFET is of the order of several $\mathrm{M} \Omega$	5	2	5	1.3.1
(ii)	R_{E} in the differential amplifier can be replaced by properly biased BJT	5	3	5	1.3.1
2A	In the circuit arrangement with $\mathrm{FET}, \mathrm{V}_{\mathrm{GG}}$ is $2 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega, \quad \mathrm{R}_{\mathrm{D}}=$ $2 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{DD}}=16 \mathrm{~V} . \mathrm{I}_{\mathrm{DSS}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{P}}=-8 \mathrm{~V}$. Draw the circuit diagram. Calculate $V_{\text {DSQ }}$. Which type of biasing is used? Explain the same.	10	2	3	2.1.3
B	Draw and explain ac equivalent circuit of JFET. Explain the parameters.	10	2	2	1.3.1
$\begin{aligned} & \hline 3 \mathrm{~A} \\ & \text { (i) } \\ & \hline \end{aligned}$	Sketch the output waveform for the following circuit. Input voltage is $5 \sin \omega t . \mathrm{Vdc}=2.5 \mathrm{~V}$. Assume ideal diode.	05	1	$\begin{aligned} & 1, \\ & 2 \end{aligned}$	1.4.1
(ii)	Choose the components (for best design) from the following list to get a circuit which gives a d.c shift of +5 Volts. Justify the choice of components. Input to be given is $5 \sin (2000 \pi \mathrm{t})$. Draw the circuit along with the corresponding waveform. Diode, Power supply (0 to 30 V). Signal generator. Resistors ($1 \mathrm{~K} \Omega$, $10 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega$) Capacitors ($0.1 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.001 \mu \mathrm{~F}$)	05	1	5	3.3.1
3B	Determine R_{C}, R_{B} for the fixed bias CE BJT circuit such that operating point is $V_{C E}=8 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$. Supply voltage is 15 V d.c. Use Si transistor with $\beta=100$. Take base-emitter voltage $V_{\text {BE }}=0.6 \mathrm{~V}$. Determine stability factor. Draw ac equivalent circuit. Determine $\mathrm{Zi}, \mathrm{Zo}, \mathrm{Av}$. Given $\mathrm{h}_{\mathrm{fe}}=100, \mathrm{~h}_{\mathrm{ie}}=2 \mathrm{k} \Omega$.	10			

4A (i)	Identify the circuit given below. Determine V_{0}. Explain its working. $\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}$	5	4	2	2.1.3
(ii)	Identify the circuit given below. Determine V_{0}. Explain its working.	5	4	2	2.1.3
4B	The following specifications are given for the dual input, balancedoutput differential amplifier $\mathrm{R}_{\mathrm{C}}=3.3 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{s}}=150 \Omega, \mathrm{~V}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {FF. }}$ are 12 V , and -12 V respectively, $\mathrm{h}_{\mathrm{fc}}=100, \mathrm{~h}_{\mathrm{ic}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{BF}}=0.7 \mathrm{~V} . \mathrm{R}_{\mathrm{F}}=8.2 \mathrm{k} \Omega$. Draw the circuit diagram. Determine the operating points (I_{CQ} and $\mathrm{V}_{\mathrm{CEQ}}$) of the two transistors. Determine $A_{c}, A_{d}, R_{0}, R_{i}, \operatorname{CMRR}$ ($d B$)	10	3	3	2.1.3
5 A	Draw and explain block diagram of opamp.	10	4	2	2.1.3
B	Explain the following terms w.r.t. opamp IC 741. Specify typical values	10	4	2	1.3.1
	(i) Slew rate (iv) output resistance				
	(ii) UGB (v) CMRR				
	(iii) Input resistance				
6A	Explain the OPAMP as a Schmitt Trigger. Draw corresponding waveforms. What is UTP and LTP?	10	4	2	2.1.3
6B	Explain use of opamp as a differentiator.	10	4	2	2.1.3
7 A	Explain dual slope integrating type ADC.	10	4	2	2.1.3
B	Explain $\mathrm{R}-2 \mathrm{R}$ ladder type digital to analog converter.	10	4	2	2.1.3

Sardar Patel College of Engineering
(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

Reexam, Jan 2020

Program: : Electrical Engineering
Course Code : PC-BTE302
Name of the Course: Electrical Networks
Note: Answer any 5 questions...
Assume suitable data if missing

Duration:3 hours
Max points: 100 marks
Semester: III

$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~N} \end{aligned}$		Mar ks	$\begin{aligned} & \mathrm{C} \\ & \mathrm{O} \end{aligned}$	BL	PI
1 a.	For the circuit through the $20 h m$ resistor in the network by	10	2	3	2.1.3
b.	Find the frequency at which the circuit will be at resonance.	4	1	3	2.1.3
c	Justify whether the given polynomial is Hurwitz $\begin{aligned} & \mathrm{P}(\mathrm{~s})=s^{4}+s^{3}+2 s^{2}+3 s+2 \\ & \mathrm{P}(\mathrm{~s})=s^{5}+s^{3}+s \end{aligned}$	6	4	6	2.4.1
2 a .	For the network shown, the switch is closed at $\mathrm{t}=0$, the steady state being reached before $t=0$. Determine the current through the inductor of 3 H .(laplace method)	8	3	3	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$

b.	For the given network draw oriented graph, write down the ftie set matrix and f-cutset matrix and incidence matrix.	8	1	5	2.1.3
c)	Find the poles and zeros of the impedence of the given network and plot them on s plane	4	2	3	2.1.3
3a	Check whether the function $Z(s)=\frac{s^{3}+6 s^{2}+7 s+3}{s^{2}+2 s+1}$ is a positive real function.	8	3	5	1.3.1
b.	Find the current through Z_{L} using mesh analysis	12	1	3	2.1.3
4a	Draw the dual of the given network.	5	2	5	2.1.3

b	In the network switch is closed Assuming all initial conditions as zero find $\mathrm{i}, \mathrm{di} / \mathrm{dt}, \mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$	10	4	5	2.1.3
c	In the case of a series RC circuit excited by a DC supply V derive equation for transient current with initial conditions.	5	3	3	2.1.3
5a	In the network determine currents $i_{1}(t)$ and $i_{2}(t)$ when the switch is closed at $\mathrm{t}=0$.	10	2	3	2.1.3
b	Determine the Y and Z parameters for the given network	10	4	3	1.3.1
6 a	A network is shown in fig.The poles and zeros of the driving point function $Z(s)$ of this network are at the following places. Poles at $-\frac{1}{2} \pm j \frac{\sqrt{ } 3}{2}$, Zero at -1 .If $Z(j 0)=1$, Find the values of R,L, and C.	10	4	4	1.3.1

| b. | Find V_{0} using the principle of superposition theorem. | 10 | 1 | 3 | 2.1 .3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7a. | Realize the Foster I and II forms of the LC impedance function
 $\mathrm{Z}(\mathrm{s})=\frac{\left(s^{2}+1\right)\left(s^{2}+3\right)}{s\left(s^{2}+2\right)\left(s^{2}+4\right)}$ | 12 | 4 | 5 | 2.1 .3 |
| b | Synthesize the following LC impedance function in Cauer 1
 and II form $\mathrm{Z}(\mathrm{s})=\frac{10 s^{4}+12 s^{2}+1}{2 s^{3}+2 s}$ | 8 | 3 | 3 | 2.1 .3 |

Bharatiya Vida Bhavan's

Sirdar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

Re Exam Jan 2020

Program: Electrical Engineering
Course code: PC-BTE301
Name of the Course: Electronic Circuits

Duration: 3 Hour
Maximum Marks: 100
Semester: III

Solve any five questions out of seven

$\begin{array}{\|l} \hline 4 \mathrm{~A} \\ \text { (i) } \end{array}$	Identify the circuit given below. Determine V_{0}. Explain its working. $\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}$	5	4	2	2.1.3
(ii)	Identify the circuit given below. Determine V_{0}. Explain its working.	5	4	2	2.1.3
4B	The following specifications are given for the dual input, balancedoutput differential amplifier : $\mathrm{R}_{\mathrm{C}}=3.3 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{s}}=150 \Omega, \mathrm{~V}_{\mathrm{CC}}$ and V_{EF} are 12 V , and -12 V respectively, $\mathrm{h}_{\mathrm{fc}}=100, \mathrm{~h}_{\mathrm{ie}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{BF}}=0.7 \mathrm{~V} . \mathrm{R}_{\mathrm{F}}=8.2 \mathrm{k} \Omega$. Draw the circuit diagram. Determine the operating points (I_{CQ} and $\mathrm{V}_{\mathrm{CEQ}}$) of the two transistors. Determine $A_{c} A_{d}, R_{0}, R_{i}$, CMRR ($d B$)	10	3	3	2.1.3
5 A	Draw and explain block diagram of opamp.	10	4	2	2.1.3
B	Explain the following terms w.r.t. opamp IC 741 . Specify typical values	10	4	2	1.3.1
	(i) Slew rate (iv) output resistance				
	(ii) UGB (v) CMRR				
	(iii) Input resistance				
6A	Explain the OPAMP as a Schmitt Trigger. Draw corresponding waveforms. What is UTP and LTP?	10	4	2	2.1.3
6 B	Explain use of opamp as a differentiator.	10	4	2	2.1.3
7A	Explain dual slope integrating type ADC.	10	4	2	2.1.3
B	Explain $\mathrm{R}-2 \mathrm{R}$ ladder type digital to analog converter.	10	4	2	2.1.3

Re Examination

January 2020

Program: S.Y. B.Tech.
Course code: BTE206
Name of the Course: Numerical Techniques
Note: Solve any five questions

Date:

Duration: SHr
Maximum Marks: 100
Semester: III

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai -400058
End Semester Examinations- January 2020

Program: Electrical Engineering
Course Code: BS-BTE301
Course Name: Applied Mathematics III

Duration: 3 hours
Maximum Points: 100
Semester: III

Instructions:

1. Question No 1 is compulsory.
2. Attempt any four questions out of remaining six.
3. Answers to sub questions should be grouped together.

3(a)	Reduce the following matrix to normal form and hence find its rank. $A=\left[\begin{array}{cccc} 8 & 3 & 6 & 1 \\ -1 & 6 & 4 & 2 \\ 7 & 9 & 10 & 3 \end{array}\right]$	6	4	i, ii	$\begin{array}{\|l\|} \hline 2.4 \\ \hline .1 \end{array}$
(b)	Using method of Laplace Transforms solve following differential equation $\left(D^{2}-D-2\right) y=\sin 2 t \text { where } y(0)=1, y^{\prime}(0)=2$	6	1	ii, iii	2.4
(c)	Find Fourier Series Expansion of following function in the interval $(0,2 \pi)$ $f(x)=\left\{\begin{array}{cc} x & 0 \leq x \leq \pi \\ 2 \pi-x, & \pi \leq x \leq 2 \pi \end{array}\right.$	8	2	iv, v	$\begin{array}{\|l} \hline 1.1 \\ \hline .1 \end{array}$
4(a)	Find the image of the circle $\|z-1\|=1$ under the transformation $\frac{1}{z}$	6	3	i, ii	$\begin{aligned} & 1.1 \\ & .1 \end{aligned}$
(b)	Find Half Range Fourier sine Series of $f(x)=l x-x^{2}, \quad 0<x<l$	6	2	iv, v	$\begin{aligned} & 2.4 \\ & .1 \end{aligned}$
(c)	For the following matrix A , find two non-singular matrices P and Q such that PAQ is in the normal form where $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$. Hence find A^{-1}	8	4	$\begin{aligned} & \mathrm{iii}, \\ & \mathrm{iii} \end{aligned}$	2.4

5(a)	Show that the set $S=\{\cos x, \cos 2 x, \cos 3 x, \cdots\}$ is Orthogonal over $(0,2 \pi)$.	6	2	i, ii	$\begin{array}{\|l\|} \hline 2.4 \\ \hline .1 \end{array}$
(b)	If $A=\left[\begin{array}{cc}2 & 3 \\ -3 & -4\end{array}\right]$, using Cayley Hamilton Theorem, find A^{100}	6	4	ii, iii	$\begin{array}{\|l} 2.4 \\ \hline \end{array}$
(c)	Evaluate (i) $L^{-1}\left\{\frac{2 s^{2}+5 s+2}{(s-1)^{3}}\right\}$ (ii) $L^{-1}\left\{\log \left(1+\frac{4}{s^{2}}\right)\right\}$	8	1	iv,	$\begin{array}{\|l\|} \hline 1.1 \\ \hline 1 \end{array}$
6(a)	Find an analytic function $f(z)=u(x, y)+i v(x, y)$ if $v=e^{-x}\left[2 x y \cos y+\left(y^{2}-x^{2}\right) \sin y\right]$	6	3	$\mathrm{ii},$	$\begin{array}{\|l} \hline 1.1 \\ .1 \end{array}$
(b)	Find Eigen values of the matrix $A=\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$	6	4	iv, v	$\begin{array}{\|l\|} \hline 2.4 \\ \hline \end{array}$
(c)	Find the bilinear transformation which maps the points $2, i,-2$ of z-plane onto $1, i,-1$ of w-plane respectively	8	3	i, ii	$\begin{array}{\|l} \hline 1.1 \\ \hline .1 \end{array}$
7(a)	Show that the transformation $w=\frac{5-4 z}{4 z-2}$ transforms the circle $\|z\|=1$ into a circle in the w-plane.	6	3	i, ii	$\begin{array}{\|l\|} \hline 1.1 \\ \hline \end{array}$
(b)	Test the consistency of the following system of equations and solve them if they are consistent $\begin{gathered} 4 x-2 y+6 z=8 \\ x+y-3 z=-1 \\ 15 x-3 y+9 z=21 \end{gathered}$	6	4	$\begin{aligned} & \mathrm{ii}, \\ & \mathrm{iii} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1 \end{aligned}$
(c)	Evaluate $L^{-1}\left\{\frac{s}{s^{4}+4}\right\}$	8	1	ii,	1.1 .1

