

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai 400058

Re Examinations (For Academic Year 2017-18)- January 2020

Program: Electrical Engineering

Course Code: BTE201

Course Name: Engineering Mathematics III

Duration: 3 hours

Maximum Points: 100

Semester: III

Instructions:

1. Question No 1 is compulsory.

2. Attempt any four questions out of remaining six.

3. Answers to sub questions should be grouped together.

Q.No.	Questions	Points
1(a)	Prove that $\int_{0}^{\infty} \left(\frac{\sin 2t + \sin 3t}{te'} \right) dt = \frac{3\pi}{4}$	6
(b)	Find the image of the rectangular region bounded by the lines $x = 0$, $x = 1$, $y = 0$, $y = 2$ in the z plane under the transformation $w = z + (2 - i)$. Draw the sketch.	6
(c)	Let A be a square matrix of order 3×3 with $ A = 1$. If $\lambda = \frac{-1 + i\sqrt{3}}{2}$ is one of the eigen values of A, (i) Find all the eigen values of A (ii) If $A^{100} = pA^2 + qA + rI$, find p, q and r	8
2(a)	If $L\left\{erf\sqrt{t}\right\} = \frac{1}{s\sqrt{s+1}}$, find $L\left\{te^{-3t}erf\left(4\sqrt{t}\right)\right\}$	6
(b)	If function $f(z)$ is analytic and $ f(z) $ is constant, prove that $f(z)$ is constant	6
(c)	Find Eigen Values and corresponding Eigen Vectors of the matrix $A = \begin{bmatrix} -2 & -8 & -12 \\ 1 & 4 & 4 \\ 0 & 0 & 1 \end{bmatrix}$	8

3(a)	Reduce the following matrix to normal form and hence find its rank.	6
S(a)	$A = \begin{bmatrix} 8 & 3 & 6 & 1 \\ -1 & 6 & 4 & 2 \\ 7 & 9 & 10 & 3 \end{bmatrix}$	
	$\begin{bmatrix} A = \begin{bmatrix} -1 & 6 & 4 & 2 \\ 7 & 9 & 10 & 3 \end{bmatrix}$	
(b)	Using method of Laplace Transforms solve following differential equation $(D^2 - D - 2)y = \sin 2t \text{ where } y(0) = 1, \ y'(0) = 2$	6
(c)	Find Fourier Series Expansion of following function in the interval $(0,2\pi)$	8
	$f(x) = \begin{cases} x & 0 \le x \le \pi \\ 2\pi - x, \ \pi \le x \le 2\pi \end{cases}$	
4(a)	Find the image of the circle $ z-1 =1$ under the transformation $\frac{1}{z}$	6
(b)	Find Half Range Fourier sine Series of $f(x) = lx - x^2$, $0 < x < l$	6
(c)	For the following matrix A, find two non-singular matrices P and Q such that PAQ is in the normal form where $A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$. Hence find A-1	8
5(a)	Show that the set $S = \{\cos x, \cos 2x, \cos 3x, \cdots\}$ is Orthogonal over $(0, 2\pi)$	6
(b)	If $A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$, using Cayley Hamilton Theorem, find A^{100}	6
(c)	Evaluate (i) $L^{-1} \left\{ \frac{2s^2 + 5s + 2}{(s-1)^3} \right\}$ (ii) $L^{-1} \left\{ \log \left(1 + \frac{4}{s^2} \right) \right\}$	8
6(a)	Find an analytic function $f(z) = u(x, y) + iv(x, y)$ if	6
	$v = e^{-x} \left[2xy \cos y + \left(y^2 - x^2 \right) \sin y \right]$	

(b)	$\cos\theta \sin\theta$	6
	Find Eigen values of the matrix $A = -\sin\theta \cos\theta = 0$	6
	Find Eigen values of the matrix $A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
(c)	Find the bilinear transformation which maps the points 2, i , -2 of z -plane onto 1, i , -1 of w -plane respectively	8
7(a)	Show that the transformation $w = \frac{5-4z}{4z-2}$ transforms the circle $ z =1$ into a	6
	circle in the w-plane.	
(b)	Test the consistency of the following system of equations and solve them if they are consistent	6
	4x - 2y + 6z = 8	
	x + y - 3z = -1 $15x - 3y + 9z = 21$	
(c)	Evaluate $L^{-1}\left\{\frac{s}{s^4+4}\right\}$	8

Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

Reexam, Jan 2020

Program: : Electrical Engineering

Course Code: PC-BTE302

Name of the Course: Electrical Networks

Note: Answer any 5 questions... Assume suitable data if missing Duration:3 hours

Max points: 100 marks

Q N		Mar	C	BL	PI
1a.	For the circuit through the 20hm resistor in the network by Nortons theorem 2 Ix 100 2 A 100	ks 10	2	3	2.1.3
b.	Find the frequency at which the circuit will be at resonance.	4	1	3	2.1.3
С	Justify whether the given polynomial is Hurwitz $P(s)=s^{4}+s^{3}+2s^{2}+3s+2$ $P(s)=s^{5}+s^{3}+s$	6	4	6	2.4.1
2a.	For the network shown, the switch is closed at t=0, the steady state being reached before t=0. Determine the current through the inductor of 3H. (laplace method)	8	3	3	1.3.1 2.1.3

b.	For the given network draw oriented graph, write down the f- tie set matrix and f-cutset matrix and incidence matrix. R1 R2 R3 V,	8	1	5	2.1.3
c)	Find the poles and zeros of the impedence of the given network and plot them on s plane 2(s) 2 4 4 4 4 4 4 4 4 4	4	2	3	2.1.3
3a	Check whether the function $Z(s) = \frac{s^3 + 6s^2 + 7s + 3}{s^2 + 2s + 1}$ is a positive real function.	8	3	5	1.3.1
b.	Find the current through Z _L using mesh analysis Z _L = (3+j4)	12	1	3	2.1.3
4ā	Draw the dual of the given network. S R R R R R R R R R R R R	5	2	5	2.1.3

b	In the network switch is closed Assuming all initial conditions as zero find i, di/dt,d ² i/dt ² at t=0 ⁺	10	4	5	2.1.3
	lov Time Troms				
С	In the case of a series RC circuit excited by a DC supply V derive equation for transient current with initial conditions.	5	3	3	2.1.3
5a	In the network determine currents $i_1(t)$ and $i_2(t)$ when the switch is closed at $t=0$.	10	2	3	2.1.3
ь	Determine the Y and Z parameters for the given network Ty Ty Ty Ty Ty Ty Ty Ty Ty T	10	4	3	1.3.1
6a	A network is shown in fig. The poles and zeros of the driving point function $Z(s)$ of this network are at the following places. Poles at $-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$, Zero at -1. If $Z(j0)=1$, Find the values of R,L, and C.	10	4	4	1.3.1

b.	Find V ₀ using the principle of superposition theorem.	10	(Panal	3	2.1.3
7a.	Realize the Foster I and II forms of the LC impedance function $Z(s) = \frac{(s^2+1)(s^2+3)}{s(s^2+2)(s^2+4)}$	12	4	5	2.1.3
b	Synthesize the following LC impedance function in Cauer 1 and II form $Z(s) = \frac{10s^4 + 12s^2 + 1}{2s^3 + 2s}$	8	3	3	2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

RE Exam - January 2020 Examinations

Program: Electrical

Course Code: PC-BTE303

Course Name: Digital Electronics

Duration: 1 hour

Maximum Points: 20

Semester: III

• Attempt any 5 out of 7 questions

• Make suitable assumptions wherever necessary

Q.No.	Questions	Points	CO	BL	DI
la.	The input to a combinational logic circuit is a 4 bit binary number. Design the circuit using minimum hardware whose output is valid BCD number.	10	2	6	3.2.2
16.	Implement BCD to Seven Segment (common anode type) code converter	10	2	3	2.2.3
2a.	Design a controlled addition / subtraction circuit using IC 7483.	10	2	6	3.2.2
2b.	Explain what are the problems associated with asynchronous counter and how they can be overcome.	10	3	2	1.4.1
3a.	Do the following conversion: i. S-R flip flop to D flip flop ii. J-K flip flop to T flip flop	10	3	3	3.2.1
3b.	Explain the working of TTL NOR gate.	10	4	2	1.4.1
4a.	Implement the following $f(A,B,C,D) = \sum m(0,1,3,5,7,8,9,10,12,13,15) \text{using}$ 1. Single 2:1 Mux 2. Single 4:1 Mux	10	2	4	2.2.3
4b.	Explain with help of neat diagram Left shift register and Right Shift register.	10	3	2	1.4.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

RE Exam - January 2020 Examinations

5a.	Design a10 bit comparator using IC 7485.	10	2	6	3.2.2
5b.	Discuss the classification of memories	10	4	2	1.4.1
6a.	Design the following synchronous counter using the concept of bushing.	10	3	6	3.2.2
6b.	Perform the following i. $(101101)_2 = (?)_8$ ii. $(A2C4)_{16} = (?)_{10}$ iii. $(10011)_2 - (11001)_2$ using 1's compliment method iv. $(46)_{10} = (?)_{XS-3}$ v. $(1111)_2 * (101)_2$	10	1	3	2.1.3
7a.	Suppose the receiver receives hamming code data as 1011110. Find out if there is any error or not and correct it if error is present.	10	1	4	2.2.3
7b.	Write short note on SOP and POS.	10	2	2	1.4.1

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

Re Exam Jan 2020

Program:

Electrical Engineering

Course code: PC-BTE301

Name of the Course: Electronic Circuits

Duration: 3 Hour

Maximum Marks: 100

Sol	lve any five questions out of seven				
Q.		Points	СО	BL	PI
1 A	State whether the following statements are true/false. Justify the same.				
(i)	Open loop opamp is used as amplifier at low frequency.	5	4	5	1.3.1
(ii)	Instrumentation amplifier is used in medical electronics.	5	4	5	1.3.1
B(i)	The input impedance of a MOSFET is of the order of several $M\Omega$	5	2	5	1.3.1
(ii)	R _E in the differential amplifier can be replaced by properly biased BJT	5	3	5	1.3.1
2A	In the circuit arrangement with FET, V_{GG} is 2 V, $R_G = 1M \Omega$, $R_D = 1M \Omega$	10	2	3	2.1.3
	$2K\Omega$, $V_{DD} = 16 \text{ V}$. $I_{DSS} = 10 \text{ mA}$, $V_{P} = -8 \text{ V}$. Draw the circuit diagram.				
	Calculate V _{DSQ} . Which type of biasing is used? Explain the same.				
	Soy. It is a series and the surfice.				
В	Draw and explain ac equivalent circuit of JFET. Explain the parameters.	10	2	2	1.3.1
	The state of the s	10	2		1.5.1
3A	Sketch the output waveform for the following circuit. Input voltage is	05	1	1,	1.4.1
(i)	5 sin ωt. Vdc = 2.5 V. Assume ideal diode.	0.5	1	2	1.7.1
ŀ	R				
	+				
}					
	D				
	Vin Vo				
!	(, (,),				
	Vdc				
	+				
(ii)	Change the components (for both daily) Could Cill in the				
(11)	Choose the components (for best design) from the following list to get a	05	1	5	3.3.1
	circuit which gives a d.c shift of + 5 Volts. Justify the choice of	Ė			
	components. Input to be given is 5 sin (2000 π t). Draw the circuit along with the corresponding waveform.				
	Diode, Power supply (0 to 30V). Signal generator. Resistors ($1K\Omega$,				
	10KΩ, 100KΩ) Capacitors (0.1 μF, 0.01 μF, 0.001 μF)				
3B	Determine R_C , R_B for the fixed bias CE BJT circuit such that operating	10			
		10			
	point is $V_{CE} = 8 \text{ V}$ and $I_{C} = 2 \text{ mA}$. Supply voltage is 15V d.c. Use Si				
	transistor with $\beta = 100$. Take base-emitter voltage $V_{BE} = 0.6 V$. Determine				
	stability factor. Draw ac equivalent circuit. Determine Zi, Zo, Av.				
	Given $h_{fe} = 100$, $h_{ie} = 2 k\Omega$.				

4A (i)	Identify the circuit given below. Determine V_{o} . Explain its working. $V_{\text{in}} = 0.5 \text{ V}$	5	4	2	2.1.3
	Rf=10K WW 9+15V 7 7 741 6 741 741 741 83 1K Vout				
(ii)	Identify the circuit given below. Determine V _o . Explain its working.	5	4	2	2.1.3
	Rb $2k$ Ra $V0$ $R1 4k$ $V1 = 1V$ $R2 4k$ $V2 = 3V$ $R3 4k$ $V3 = 4V$				
4B	The following specifications are given for the dual input, balanced-output differential amplifier : $R_{C}=3.3~k\Omega,R_{s}\equiv150~\Omega,V_{CC}~\text{and}~V_{EE}~\text{are}~12V,\text{and}~-12~V~\text{respectively},\\ h_{fe}=100,~h_{ie}=1~k\Omega,V_{BE}=0.7V,R_{E}=8.2~k\Omega.$ Draw the circuit diagram. Determine the operating points (I _{CQ} and V _{CEQ}) of the two transistors. Determine $A_{c},A_{d},R_{o},R_{i},\text{CMRR}~(\text{dB})$	10	3	3	2.1.3
5 A	Draw and explain block diagram of opamp.	10	4	2	2.1.3
В	Explain the following terms w.r.t. opamp IC 741. Specify typical values (i) Slew rate (iv) output resistance (ii) UGB (v) CMRR	10	4	2	1.3.1
	(iii) Input resistance				
6A	(iii) Input resistance Explain the OPAMP as a Schmitt Trigger. Draw corresponding	10	4	2	2.1.3
6A 6B	(iii) Input resistance	10	4	2	2.1.3
	(iii) Input resistance Explain the OPAMP as a Schmitt Trigger. Draw corresponding waveforms. What is UTP and LTP?				

Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

Reexam, Jan 2020

Program: : Electrical Engineering

Course Code: PC-BTE302

Name of the Course: Electrical Networks

Note: Answer any 5 questions... Assume suitable data if missing Duration:3 hours

Max points: 100 marks

Q N		Mar	C	BL	PI
		ks	0		
1a.	For the circuit through the 20hm resistor in the network by Nortons theorem 2 Ix 10 \text{10 A}	10	2	3	2.1.3
).	Find the frequency at which the circuit will be at resonance.	4	1	3	2.1.3
	Justify whether the given polynomial is Hurwitz $P(s)=s^{4}+s^{3}+2s^{2}+3s+2$ $P(s)=s^{5}+s^{3}+s$	6	4	6	2.4.1
a.	For the network shown, the switch is closed at t=0, the steady state being reached before t=0. Determine the current through the inductor of 3H. (laplace method)	8	3	3	1.3.1 2.1.3

b.	For the given network draw oriented graph, write down the f- tie set matrix and f-cutset matrix and incidence matrix.	8	1	5	2.1.3
c)	Find the poles and zeros of the impedence of the given network and plot them on s plane $ \begin{array}{c} $	4	2	3	2.1.3
3a	Check whether the function $Z(s) = \frac{s^3 + 6s^2 + 7s + 3}{s^2 + 2s + 1}$ is a positive real function.	8	3	5	1.3.1
b.	Find the current through Z_L using mesh analysis $Z_L = (3+j4)$	12	1	3	2.1.3
4ā	Draw the dual of the given network. S R R R R R R R R R R R R	5	2	5	2.1.3

b	In the network switch is closed Assuming all initial conditions as zero find i, di/dt, d ² i/dt ² at t=0 ⁺ lov i(+)	10	4	5	2.1.3
С	In the case of a series RC circuit excited by a DC supply V derive equation for transient current with initial conditions.	5	3	3	2.1.3
5a	In the network determine currents $i_1(t)$ and $i_2(t)$ when the switch is closed at $t=0$.	10	2	3	2.1.3
b	Determine the Y and Z parameters for the given network Ti 2	10	4	3	1.3.1
6a	A network is shown in fig. The poles and zeros of the driving point function $Z(s)$ of this network are at the following places. Poles at $-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$, Zero at -1. If $Z(j0)=1$, Find the values of R,L, and C.	10	4	4	1.3.1

b.	Find V ₀ using the principle of superposition theorem. 3 1 2 1	10	1	3	2.1.3
7a.	Realize the Foster I and II forms of the LC impedance function $Z(s) = \frac{(s^2+1)(s^2+3)}{s(s^2+2)(s^2+4)}$	12	4	5	2.1.3
b	Synthesize the following LC impedance function in Cauer 1 and II form $Z(s) = \frac{10s^4 + 12s^2 + 1}{2s^3 + 2s}$	8	3	3	2.1.3

Sin Second

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

Re Exam Jan 2020

Program: Electrical Engineering

Course code: PC-BTE301

Name of the Course: Electronic Circuits

Duration: 3 Hour

Maximum Marks: 100

Solve ar	y five	questions	out of	seven
----------	--------	-----------	--------	-------

	ve any five questions out of seven				
Q.	Ctoto which is a City in	Points	СО	BL	PI
1 A	State whether the following statements are true/false. Justify the same.				
(i) (ii)	Open loop opamp is used as amplifier at low frequency.	5	4	5	1.3.1
	Instrumentation amplifier is used in medical electronics.	5	4	5	1.3.1
B(i)	The input impedance of a MOSFET is of the order of several M Ω	5	2	5	1.3.1
(11)	R _E in the differential amplifier can be replaced by properly biased BJT	5	3	5	1.3.1
2A	In the circuit arrangement with FET, V_{GG} is 2 V, R_G = 1M Ω , R_D = $2K\Omega$, V_{DD} = 16 V. I_{DSS} = 10mA, V_P = -8V. Draw the circuit diagram. Calculate V_{DSO} . Which type of biasing is used? Explain the same.	10	2	3	2.1.3
В	Draw and explain ac equivalent circuit of JFET. Explain the parameters.	10	2	2	1.3.1
3A (i)	Sketch the output waveform for the following circuit. Input voltage is 5 sin ωt. Vdc = 2.5 V. Assume ideal diode.	05	1	1, 2	1.4.1
	Vin Vo				
(ii)	Choose the components (for best design) from the following list to get a circuit which gives a d.c shift of + 5 Volts. Justify the choice of components. Input to be given is 5 sin (2000 π t). Draw the circuit along with the corresponding waveform. Diode, Power supply (0 to 30V). Signal generator. Resistors ($1K\Omega$, $10K\Omega$, $100K\Omega$) Capacitors ($0.1~\mu F$, $0.01~\mu F$, $0.001~\mu F$)	05	1	5	3.3.1
3B	Determine R_C , R_B for the fixed bias CE BJT circuit such that operating point is $V_{CE}=8$ V and $I_C=2$ mA . Supply voltage is 15V d.c. Use Si transistor with $\beta=100$. Take base-emitter voltage $V_{BE}=0.6$ V. Determine stability factor. Draw ac equivalent circuit. Determine Zi, Zo, Av. Given $h_{fe}=100,h_{ie}=2$ k Ω .	10			

	Identify the circuit given below. Determine V _o . Explain its working.	5	4	2	2.1.3
(i)	$V_{in} = 0.5 \text{ V}$				
	Rf=10K WM 15V 741 8 741				
(ii)	Identify the circuit given below. Determine V _o . Explain its working.	5	4	2	2.1.3
	Rb $ 2k $ Ra $ 1k $ Vo $ R1 4k $ Vo $ R2 4k $ V2 = 3V $ R3 4k $ V3 = 4V $ R3 4k $				
4B	The following specifications are given for the dual input, balanced-output differential amplifier: $R_{C}=3.3~k\Omega,R_{s}=150~\Omega,V_{CC}~\text{and}~V_{EE}~\text{are}~12V,\text{and}~-12~V~\text{respectively},\\ h_{fe}=100,~h_{ie}=1~k\Omega,V_{BE}=0.7V.R_{E}=8.2~k\Omega.$ Draw the circuit diagram. Determine the operating points (Icq and Vceq) of the two transistors. Determine $A_{c_{s}}$ A_{d} , R_{o} , R_{i} , CMRR (dB)	10	3	3	2.1.3
5 A	Draw and explain block diagram of opamp.	10	4	2	2.1.3
B	Explain the following terms w.r.t. opamp IC 741. Specify typical values	10	4	2	1.3.1
	(i) Slew rate (iv) output resistance (ii) UGB (v) CMRR (iii) Input resistance				
6A	Explain the OPAMP as a Schmitt Trigger. Draw corresponding waveforms. What is UTP and LTP?	10	4	2	2.1.3
6B	Explain use of opamp as a differentiator.	10	4	2	2.1.3
	P. L. Laboration of ADC	10	4	2	2.1.3
7A B	Explain dual slope integrating type ADC. Explain R – 2R ladder type digital to analog converter.	10	4	2	2.1.3
D	Explain to the ladder type digital to that of converter.	10		-	21210

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai 400058

Re Examination

January 2020

Program: S.Y. B.Tech. Course code: BTE206

Name of the Course: Numerical Techniques

Note: Solve any five questions

Date: 08/01/202-0 Duration: 3Hr

Maximum Marks: 100

Q No		Maxi mum	Cours	M
•		Mark s	Outco me No	ule No
Q1 a)	Evaluate sum $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ up to four significant digits.	05	04	01
b)	Perform two iterations of bisection method to find root of the equation $f(x) = x^4 - 3x^2 + x - 10 = 0$	05	01,02	02
c)	Differentiate Gauss Elimination and Gauss Jorden methods	05	03	03
d)	Draw the flow diagram of Lagrange's interpolation.	05	03	04
Q2 a)	Evaluate $f(1)$ using second order Taylor series for $f(x) = x^3 - 3x^2 + 5x - 10$	06	01,02	01
b)	Perform four iterations of Newton-Raphson method to obtain root of $f(x) = \cos x - xe^x = 0$.	07	01,02	02
d)	Find the root of $f(x) = x^3 - 2x - 5 = 0$ by Regula Falsi method. Find the value of x for three iterations.	07	01,02	02
Q3 a)	Solve the following Simultaneous equations using Gauss Elimination method $2x + 2y + z = 1$ $4x + 2y + 2z = 2$ $x + y + z = 3$	06	02,03	03
b)	Explain types of errors with suitable examples. Rounding error, Truncation error, Absolute error, Relative error	06	04	01

	From	the follow	wing t	table o	f value	es x and	y ob	tain a	$\frac{dy}{dx}$ and	$d \frac{d^2y}{dx^2} \mathbf{a}$	t x=2.	08	02,03	05
p de la constitución de la const		1	3	5		7	_							
	y	2	6	14		24								
		impson's	rd		4.0	ato foll	lowin	a inte	porati	on fron	1 the	12	01,02	05
)4	limits Evalu subin	f(x) to 0.8 $f(x)$ tate the satervals) = 0 ame u	. 1 + 0 ising 0). 3 <i>x</i> – compos	100x² ite trap	+ 50 ezoio	0x ³ - dal m	– 900 ethod)x ⁴ with 8				
)	simu	Gauss S Itaneous 0.1y - 0 + 10z =	equat 0. 3 <i>z</i> -	ions = 7, 8	5, 0.1	x + 7y	- 0.					08	01,02	03
Q5 1)	Usin	g Lagran	ges's wing	interp table			he fo	rm of	funct	ion y(x)	10	01,02	04
	x y	0 -12		0	3 12	24	A Maryers of the State of the S							
b)	of $f(x)$	oloy the final $x = 4x - 2x -$	1. 8 <i>x</i> rabol	$x^2 + 1$. lic integrals, $x = \frac{1}{2}$	$2x^3 - $ expolation $a_1 = 2 a$		1	ration	is to 1	ing ma	XIII	10	02,03	07
Q6 a)	usin	(i) E	uler's	meth			(0)=1	, h=0	.05 aı	nd y' =	$=x^2+y$	y 12	04	6
b)		w the fl lain the s		hart o	of Four	rth ord	ler R	lunge	Kutt	ta metl	nod and	d 08	03	06
	7 Use	two ite $n\emptyset(1+\epsilon)$	ration	as of with	parabo initial	olic app	proxi	matio π/2.	on to	maxim	ize A =	= 10	01, 02	0
Q7(a)	451							te the	e min	imum	by thre	e 10	02,03	0

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examinations- January 2020

Program: Electrical Engineering

Course Code: BS-BTE301

Course Name: Applied Mathematics III

Duration: 3 hours

Maximum Points: 100

Semester: III

Instructions:

1. Question No 1 is compulsory.

2. Attempt any four questions out of remaining six.

3. Answers to sub questions should be grouped together.

O N - I	Questions	Points	CO	BL	PI
Q.No. 1(a)	Prove that $\int_{0}^{\infty} \left(\frac{\sin 2t + \sin 3t}{te'} \right) dt = \frac{3\pi}{4}$	6	1	ii, iii	1.1
(b)	Find the image of the rectangular region bounded by the lines $x = 0$, $x = 1$, $y = 0$, $y = 2$ in the z plane under the transformation $w = z + (2-i)$. Draw the sketch.	6	3	iv, v	.1
(c)	Let A be a square matrix of order 3×3 with $ A = 1$. If $\lambda = \frac{-1 + i\sqrt{3}}{2}$ is one of the eigen values of A,	8	4	ii, v	2.4
	(i) Find all the eigen values of A (ii) If $A^{100} = pA^2 + qA + rI$, find p,q and r				
2(a)	If $L\left\{erf\sqrt{t}\right\} = \frac{1}{s\sqrt{s+1}}$, find $L\left\{te^{-3t}erf\left(4\sqrt{t}\right)\right\}$	6	1		.1
(b)	If function $f(z)$ is analytic and $ f(z) $ is constant, prove that $f(z)$ is constant	6	3	ii, iii	1.1
(c)	Find Eigen Values and corresponding Eigen Vectors of the matrix $A = \begin{bmatrix} -2 & -8 & -12 \\ 1 & 4 & 4 \\ 0 & 0 & 1 \end{bmatrix}$	8	4	ii,	1.1

3(a)	Reduce the following matrix to normal form and hence find its rank. $A = \begin{bmatrix} 8 & 3 & 6 & 1 \\ -1 & 6 & 4 & 2 \\ 7 & 9 & 10 & 3 \end{bmatrix}$	6	4	i, ii	2.4
(b)	Using method of Laplace Transforms solve following differential equation $(D^2 - D - 2)y = \sin 2t \text{ where } y(0) = 1, \ y'(0) = 2$	6	1	ii, iii	2.4
(c)	Find Fourier Series Expansion of following function in the interval $(0, 2\pi)$ $f(x) = \begin{cases} x & 0 \le x \le \pi \\ 2\pi - x, & \pi \le x \le 2\pi \end{cases}$	8	2	iv,	1.1
4(a)	Find the image of the circle $ z-1 =1$ under the transformation $\frac{1}{z}$	6	3	i, ii	1.1
(b)	Find Half Range Fourier sine Series of $f(x) = lx - x^2$, $0 < x < l$	6	2	iv, v	2.4
(c)	For the following matrix A, find two non-singular matrices P and Q such that PAQ is in the normal form where $A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Hence find A-1	8	4	ii, iii	2.4

5(a)	Show that the set $S = \{\cos x, \cos 2x, \cos 3x, \cdots\}$ is Orthogonal over $(0, 2\pi)$.	6	2	i, ii	2.4
(b)	If $A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$, using Cayley Hamilton Theorem, find A^{100}	6	4	ii, iii	2.4
(c)	Evaluate (i) $L^{-1} \left\{ \frac{2s^2 + 5s + 2}{(s-1)^3} \right\}$ (ii) $L^{-1} \left\{ \log \left(1 + \frac{4}{s^2} \right) \right\}$	8	- Vermand	iv,	1.1
6(a)	Find an analytic function $f(z) = u(x, y) + iv(x, y)$ if $v = e^{-x} \left[2xy \cos y + \left(y^2 - x^2 \right) \sin y \right]$	6	3	ii, v	1.1
(b)	Find Eigen values of the matrix $A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	6	4	iv,	2.4
(c)	Find the bilinear transformation which maps the points 2, i , -2 of z -plane onto 1, i , -1 of w -plane respectively	8	3	i, ii	1.1
7(a)	Show that the transformation $w = \frac{5-4z}{4z-2}$ transforms the circle $ z = 1$ into a circle in the w-plane.	6	3	1, 11	1.1
(b)	Test the consistency of the following system of equations and solve them if they are consistent $4x-2y+6z=8$ $x+y-3z=-1$ $15x-3y+9z=21$	6	4	ii,	2.4
(c)	Evaluate $L^{-1}\left\{\frac{s}{s^4+4}\right\}$	8	1	ii, v	1.1